Journal of Organometallic Chemistry, 160 (1978) 319–327 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

STUDIES OF POLY-YNE POLYMERS CONTAINING TRANSITION METALS IN THE MAIN CHAIN

III *. SYNTHESIS AND CHARACTERIZATION OF A POLY-YNE POLYMER CONTAINING MIXED METALS IN THE MAIN CHAIN, $-trans.trans.Pt(PBu_3)_2-C=C-C=C-Pd(PBu_3)_2-C=C-C=C+n/2$ **

K. SONOGASHIRA, S. KATAOKA, S. TAKAHASHI and N. HAGIHARA *

The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, 565 (Japan)

(Received June 12th, 1978)

Summary

By the reaction of $trans-(PBu_3)_2Pt(C \equiv C - C \equiv CH)_2$ with $trans-(PBu_3)_2PdCl_2$, the title polymer, $-trans,trans-Pt(PBu_3)_2-C \equiv C - C \equiv C - Pd(PBu_3)_2 - C \equiv C - C \equiv C - T_{n/2}$ (II), has been prepared and characterized by spectral and analytical data. The alternating regularity of the metal arrangement in II was confirmed by the selective formation of the trinuclear complex $trans, trans, trans-ClPd(PBu_3)_2-C \equiv C - C \equiv C - C \equiv C - Pt(PBu_3)_2 - C \equiv C - C \equiv C - Pd(PBu_3)_2 - C \equiv C - C \equiv C - C \equiv C - Pd(PBu_3)_2 - C \equiv C - C \equiv C - C \equiv C - Pd(PBu_3)_2 - C \equiv C - C = C - C \equiv C - C \equiv$

Introduction

A wide range of polymers containing metallocene derivatives [1] or transition metal carbonyl derivatives [2] have been reported. These polymers are of interest because of their potential catalytic activity and physical properties. In previous papers [3,4] we reported the Pt—poly-yne polymer I having a backbone composed of conjugated poly-ynes and platinum atoms as the first example of polymers containing σ -bonded transition metal atoms in the main chain. Polymer I (\overline{Mw} 120 000) is easily soluble in aprotic organic solvents as methylene chloride, diethylamine, benzene, toluene, THF and even in n-hexane. The high solubility of I is thought to be attributed to the butyl substituents at phosphorus. From various evidence based on the ³¹P NMR and behaviour in solution, it was

^{*} For part II see ref. 4.

^{**} Dedicated to Professor Ernst Otto Fischer on the occasion of his 60th birthday on November 10, 1978.

concluded that the polymer has the all-*trans* configuration at the platinum moiety and a rigid rod-like structure in solution [4].

In connection with the studies of such polymers, we have investigated poly-yne polymers containing alternate arrangements of platinum and palladium atoms in the backbone. We hope that such polymers, in which different kinds of metals are regularly arranged at appropriate distances, will serve as special models for studying physical properties and catalytic activity. The synthesis and characterization of Pt—Pd mixed polymers are described below.

Results and discussion

Polymers containing alternate platinum and palladium atoms in the backbone are prepared by the following two methods: (i) reaction of $trans-(PBu_3)_2Pt-(C\equiv C=CH)_2$ with $trans-(PBu_3)_2PdCl_2$ (eq. 1), (ii) reaction of $trans-(PBu_3)_2Pd-$

 $(C \equiv C - C \equiv CH)_2$ with trans- $(PBu_3)_2 PtCl_2$ (eq. 2). Both reactions gave air-stable, pale-yellow polymers, IIa and IIb.

In order to obtain structural information on the mixed metal polymers, three model complexes, III, IV and V, were prepared by the following reactions (eq. 3, 4, 5). The formation of the Pd-dinuclear complex V in eq. 5, could indicate

that dehydrochlorination [5] and symmetrization (vide infra) take place simultaneously.

Tables 1 and 2 list some physical properties, characteristic spectral data and analytical data of polymers IIa, IIb and related model complexes. The ³¹P NMR spectrum (Fig. 1) and ESCA data of IIa are consistent with a 1/1 ratio of platinum to palladium, an all *trans*-configuration [3] of platinum and palladium, and

Compound	Color	M.p. (°C)	$\nu(C \equiv C)^{b}$	Analysi	s found (ca	ulcd.) (%)		Mol. wt. (
		(°C) ^a (under N ₂)	(cim)	С	н	Р	Cl	$\frac{\text{or}}{Mw} d$
IIa	Pale	194 (dec.)	1985m	55.2	8.9	9.5		26 000
	yellow	(251)	2110w	(55.7)	(9.0)	(10.3)		
IIb	Pale	173 (dec.)	1985m	55.0	8.7	9.4		7000
	yellow	(207)	2110w	(55.7)	(9.0)	(10.3)		
III	Yellow	65.0-66.0	1992m	54.1	9.8	11.1	6.6	1711
			2290w	(54.7)	(9.5)	(10.9)	(6.2)	(1788)
IV	Yellow	66.0-66.5	199 0 m	48.7	8.5	8.9	4.0	1814
			2280w	(48.9)	(8.3)	(9.4)	(3.6)	(1966)
v	White	102.0-102.5	2000m	54.1	9.8	11.1	6.6	1114
			2280w	(54.7)	(9.5)	(10.9)	(6.2)	(1141)
VI	Pale	153 (dec.)	1978m	59.8	9.9	11.1	• •	35 000
	yellow	(196)	2240w	(59.5)	(10.3)	(11.0)		

PHYSICAL PROPERTIES OF COMPOUNDS II-VI

^{*a*} From thermal gravimetric analysis in air. ^{*b*} In Nujol. ^{*c*} VPO in CH₂Cl₂. ^{*d*} Measured by GPC [4] using *a* and *K* values of 1.7 and 6.5×10^{-9} , respectively.

with Pt^{II} and Pd^{II}-oxidation states in the polymer backbone. IIa and IIb are essentially indistinguishable from one another on the basis of the spectral data mentioned above alone.

Fig. 1. ³¹P {¹H} NMR spectrum of $-{Pt(PBu_3)_2} - C \equiv C - C \equiv C - Pd(PBu_3)_2 - C \equiv C - C \equiv C - \frac{1}{n/2}$ (IIa) in CH_2Cl_2 .

TABLE 1

•		unev)-			λ _{ınax} (nn	1) (e X 10 ⁻⁴) ^v			³¹ P {IH} si	ectra	
	Ρt		Pd						å ^c (ppm)		J(Pt-P)
	41719	41519	34519	9/5hg					rbu3 on		(Hz)
	1	1	1	2					þď	Pt	
la	72.7	76.1	338,0	343.0	265	286	340	364		-4.38	2436
					(1.39)	(1.27)	(1.17)	(2.49)			
- q	72.8	76.2	338.0	343,3	265	287	340	365	-11.03	-4.37	2437
					(1.55)	(1.40)	(1.52)	(1,86)			
Ы	72.8	76.2	338.0	343,3		281	343		9.66	4.17	2368
						(3,28)	(5.70)				
~	72.8	76.2			269	289	336	360		-4.34	2376
		•			(3.08)	(2.90)	(3.52)	(2.96)		-7.28	2435
			338.0	343.0	263	276	299		-9.83		
					(8.26)	(8.09)	(3.36)				
1.			338,1	343.1	287	314	342		-10.74		
					(1.67)	(1.55)	(2.12)				

TABLE 2 ESCA. UV AND ³¹P ^{[1}H] DATA OF COMPOUNDS II—VI 323

.

from external H₃PO₄ (positive shifts to high field).

We have examined the electronic spectra of four polymers in CH_2Cl_2 solution (Fig. 2). Analogous to other acetylide complexes [6,7], we assign the lowest energy bands to the charge transfer bands of the metal—alkynyl bonds, which have λ_{max} values of 342, 364 and 384 nm for the Pd—Pd, Pt—Pd, and Pt—Pt polymer types, respectively. The Pt—Pd polymer IIa shows a sharp absorption band, the Pd—Pt polymer IIb a broad one. These data indicate that the alternate arrangement in IIb is somewhat disordered.

Further evidence for the regularity of the metal arrangement in IIa was obtained from the product distribution after depolymerization. In transition metal acetylide chemistry, CuI shows a wide variety of catalytic functions. First, CuI catalyzes alkynylation of the metal halide in amine [5]. In HNEt₂ and under reflux conditions, CuI catalyzes the isomerization of *cis*-dialkynylplatinum complexes to the *trans*-isomer. CuI catalyzes also the symmetrization between dialkynylmetal complexes and metal chlorides. For example, a mixture of *trans*-(PBu₃)₂Pd(C=CC₆H₅)₂ and *trans*-(PBu₃)₂PdCl₂ gave, quantitatively, *trans*-(PBu₃)₂PdCl(C=CC₆H₅) (VII) (eq. 6).

Depolymerization of the palladium—poly-yne polymer VI, by trans-(PBu₃)₂-PdCl₂ in HNEt₂ in the presence of CuI catalyst, gave the palladium dimer V, quantitatively. In fact, selective cleavage of the Pd—C bond, weakened by the *trans*-alkynyl group, may take place quite easily at room temperature affording V. As the stability of the metal—carbon bond increases in passing from Pd to Pt, we noticed that, in the case of the platinum polymer I, such depolymerization occurs very slowly even under reflux. In the reaction at room temperature, the starting polymer I is recovered quantitatively (eq. 8).

Considering the above it is tempting to conclude that the polymer IIa prepared according to eq. 1 represents a more efficient method for preparing polymers having a regularly alternate arrangement of platinum and palladium in the backbone. The alternate regularity of IIa was also confirmed by the following depolymerization with *trans*-(PBu₃)₂PdCl₂. On treatment of a mixed alternating metal polymer with *trans*-(PBu₃)₂PdCl₂ in the presence of CuI catalyst at room temperature, selective cleavage of the palladium—carbon bond took place to give, exclusively, *trans,trans,trans*-ClPd(PBu₃)₂-C=C-C=C-Pt(PBu₃)₂-C=C-C=C-C=C-Pt(PBu₃)₂-C=C-C=C-C=C-Pt(PBu₃)₂-C=C-C=C-Pt(PBu₃)₂-C=C-C=C-C=C-Pt(PBu₃)₂-C=C-C=C-Pt(PBu₃)_2

regularity, depolymerization products with various numbers of platinum atoms should be produced in addition to the trinuclear complex, III. As shown in Fig. 3, GPC analysis of depolymerization products shows that the mixed metal polymer IIa gave the trinuclear complex III as the sole product, while IIb gave various oligomers. The trinuclear complex III was isolated from IIa in 75% yield by alumina column chromatography.

Fig. 3. Gel permeation chromatograms of depolymerization products obtained (a) from IIa, and (b) from IIb (see eq. 9). A, $(Bu_3P)_2PdCl; B, ClPd(PBu_3)_2-C\equiv C-Pd(PBu_3)_2Cl (V); C, ClPd(PBu_3)_2-C\equiv C-C\equiv C-Pt(PBu_3)_2-C\equiv C-C\equiv C-Pd(PBu_3)_2Cl (III); D, tetranuclear complexes.$

From the above data, we conclude that polymer IIa has a strictly alternating regularity of arrangement of the metals in the polymer backbone.

Experimental

All reactions were carried out under a nitrogen atmosphere.

Apparatus: ³¹P NMR spectra were recorded on a JEOL FX 100 spectrometer, IR spectra on a Hitachi 295 spectrometer, ESCA on a Shimadzu—DuPont 650 electron spectrometer employing Mg- K_{α} radiation. Decomposition points were determined by using a Shimadzu Thermal Analyzer DT-30. Gel permeation chromatograms were obtained using a Shimadzu—DuPont liquid chromatograph Model 830.

Materials: Starting materials, *trans*-(PBu₃)₂MCl₂ (M = Pt, Pd) and HC=C-C=CH were prepared by standard procedures [7]. *trans*-(PBu₃)₂M(C=C-C=CH)₂ (M = Pt, Pd) was prepared from *trans*-(PBu₃)₂MCl₂ and HC=C-C=CH in the presence of CuI catalyst in HNEt₂, *trans*-(PBu₃)₂PdCl(C=CC₆H₅) from *trans*-(PBu₃)₂PdCl₂ and HC=CC₆H₅ [5,8].

 $-fPt(PBu_3)_2 - C \equiv C - C \equiv C - Pd(PBu_3)_2 - C \equiv C - C \equiv C - f_{n/2}$ (IIa). A mixture of trans-(PBu_3)_2Pt(C \equiv C - C \equiv CH)_2 (698 mg, 1 mmol) and trans-(PBu_3)_2PdCl₂ (582 mg, 1 mmol) in 40 ml of HNEt₂ was allowed to react in the presence of CuI (1.9 mg, 0.01 mmol) at room temperature for 20 h and then evaporated to dryness under reduced pressure. In order to remove the cuprous compound, the residue was dissolved in CH₂Cl₂ and the resulting solution filtered by alumina column chromatography. After evaporation of the filtrate, *a* pale yellow product was collected and purified by repeated precipitation from CH₂Cl₂ with MeOH. Finally, a benzene solution (50 ml) of the product was frozen and then freeze-dried under reduced pressure to afford a pale yellow polymer of IIa having inherent viscosity of 0.35 dL/g (in THF at 25°C). Mw 26 000 (measured by GPC [4] using *a* and *K* values of 1.7 and 6.5×10^{-9} , respectively). Yield, 1.14 g (95%). The polymer IIb was prepared similarly from the condensation reaction between $trans-(PBu_3)_2Pd(C \equiv C - C \equiv CH)_2$ (602 mg, 1 mmol) and $trans-(PBu_3)_2$ -PtCl₂ (671 mg, 1 mmol) in the presence of CuI (1.9 mg) under reflux for 6 h. A similar procedure gave the pale yellow polymer IIb in 90% yield.

 $-fPd(PBu_3)_2 - C \equiv C - C \equiv C - f_n$ (VI). Following the same procedure as described for IIa, a mixture of trans-(PBu_3)_2Pd(C \equiv C - C \equiv CH)_2 (602 mg, 1 mmol) and trans-(PBu_3)_2PdCl₂ (582 mg, 1 mmol) gave the pale yellow polymer VI in 85% yield.

trans, trans, trans- $ClPd(PBu_3)_2 - C \equiv C - C \equiv C - Pt(PBu_3)_2 - C \equiv C - C \equiv C - Pd(PBu_3)_2 Cl$ (III). A mixture of trans-(PBu₃)₂Pt(C $\equiv C - C \equiv CH$)₂ (349 mg, 0.5 mmol) and trans-(PBu₃)₂PdCl₂ (873 mg, 1.5 mmol) in HNEt₂ (50 ml) was allowed to react in the presence of CuI (5 mg, 0.026 mmol) at room temperature for 3 h. Evaporation of the solvent and purification of the residue by chromatography on alumina with hexane/benzene gave yellow crystals of III in 65% yield.

trans, trans, trans-ClPt(PBu₃)₂— $C \equiv C - C \equiv C - Pt(PBu_3)_2 - C \equiv C - C \equiv C - Pt(PBu_3)_2Cl$ (IV). This complex was prepared in 40% yield in a manner similar to III, using trans-(PBu₃)₂Pt(C = C - C \equiv CH)₂ (349 mg, 0.5 mmol) and trans-(PBu₃)₂PtCl₂ (1.00 g, 1.5 mmol).

trans, trans, trans-ClPd(PBu₃)₂-C=C=C-Pd(PBu₃)₂Cl (V). Similarly this complex was prepared in 90% yield by the reaction of trans-(PBu₃)₂Pd(C=C=CH)₂ (1.00 g, 1.64 mmol) and trans-(PBu₃)₂PdCl₂ (2.87 g, 4.92 mmol) in the presence of CuI catalyst.

trans-ClPd(PBu₃)₂-C=CC₆H₅ (VII). Similarly this complex was prepared in 90% yield using trans-(PBu₃)₂Pd(C=CC₆H₅)₂ (71 mg, 0.1 mmol), trans-(PBu₃)₂-PdCl₂ (58 mg, 0.1 mmol) and CuI catalyst (2 mg).

Depolymerization of IIa. A mixture of IIa (313 mg) and trans-(PBu₃)₂PdCl₂ (582 mg, 1 mmol) in HNEt₂ (40 ml) was allowed to react in the presence of CuI (5 mg, 0.025 mmol) at room temperature for 6 h. After evaporation of the solvent, the residue was analyzed by gel permeation chromatography (see Fig. 3a). Purification of the residue by column chromatography on alumina with hexane/benzene gave yellow crystals of III in 75% yield.

Polymer VI was also depolymerized in a manner similar to the above procedure, using VI (275 mg), *trans*-(PBu₃)₂PdCl₂ (580 mg, 1 mmol) and CuI (1.9 mg, 0.01 mol), to give V in 90% yield.

Acknowledgement

The authors wish to thank the Ministry of Education, Japan, for a Grant-in-Aid (No. 243007).

References

- 1 E.W. Neuse, Adv. Macromolecul. Chem., 1 (1968) 1.
- 2 C.U. Pittman, Chem. Tech., (1971) 416.
- 3 K. Sonogashira, S. Takahashi and N. Hagihara, Macromolecules, 10 (1977) 879.
- 4 S. Takahashi, M. Kariya, T. Yatake, K. Sonogashira and N. Hagihara, Macromolecules, in press.
- 5 K. Sonogashira, T. Yatake, Y. Tohda, S. Takahashi and N. Hagihara, J. Chem. Soc., Chem. Commun., (1977) 292.
- 6 H. Masai, K. Sonogashira and N. Hagihara, Bull. Chem. Soc. Japan, 44 (1971) 2226.
- 7 K. Sonogashira, Y. Fujikura, T. Yatake, N. Toyoshima, S. Takahashi and N. Hagihara, J. Organometal. Chem., 145 (1978) 101.
- 8 Y. Fujikura, K. Sonogashira and N. Hagihara, Chem. Lett., (1975) 1067.